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In this paper we construct an efficient, accurate, and rugged 
Riemann solver for relativistic hydrodynamics. The algorithm is an 
extension of the two shock approximation of Colella to the relativistic 
regime. The Riemann solver constructed here is made to converge 
to the solution via iteration. Two different iterative techniques are 
presented, one based on a secant method and the other on a Newton 
method. The method presented here provides an exact treatment of the 
transverse velocities across general, oblique shocks. This is a non-trivial 
but very desirable property to have in a Riemann solver for relativistic 
flow. We also show the equivalence of our new formulation to the 
previous ones in the non-relativistic limit. © 1994 Academic Press, Inc. 

I. INTRODUCTION 

In recent years relativistic hydrodynamics has come to 
play an important role both in science and technology. The 
applications in science mainly draw from astrophysics. 
Almost any high energy astrophysical phenomenon requires 
a relativistic treatment. Hence, applications in that field of 
study are legion and will not be catalogued here. Recent 
advances in technology have also shown the need for 
relativistic treatment in several non-astrophysical problems. 
Thus high energy particle beams, ultra-relativistic heavy ion 
collisions, high energy nuclear collisions, and free-electron 
laser technology all call for a relativistic hydrodynamic 
treatment. In all these problem areas there is some interest 
in computing out solutions rather than solving problems 
analytically. Attempts at a computational solution of 
relativistic hydrodynamics have so far relied on artificial 
viscosity formulations, Hawley, Smarr, and Wilson [8, 9], 
Norman and Winkler [ 12]. The net result of this effort led 
Norman and Winkler [12] to conclude that artificial 
viscosity-based formulations do not work on an eulerian 
grid. This automatically prevents us from making multi- 
dimensional schemes. Hawley, Smarr, and Wilson [ 9 ] go so 
far as to observe that the absence of a Riemann solver for 
relativistic hydrodynamics is a serious impediment to the 
computational study of relativistic fluid dynamics. We, 
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therefore, begin a study of this important computational 
problem in this paper which is the first in a series of papers. 

Reliable methods for computing non-relativistic com- 
pressible fluid dynamics have existed for the last decade. 
Schemes like that of Colella and Woodward [ 3 ] yield per- 
fectly adequate results for a large variety of problems. It 
would not be unfair to say that most of these schemes are 
higher order Godunov-like schemes. The basic ingredients 
of such schemes inevitably consist of an interpolation step 
and a Riemann solver step. The interpolation can be 
imposed on the primitive variables, Colella and Woodward 
[ 3 ], on the characteristic variables, Harten et al. [ 7 ], or on 
the fluxes, Harten [ 5 ], Osher and Chakravarthy [ 13 ]. 
Various strategies for constructing the Riemann solver also 
exist. Thus one may construct an exact Riemann solver, 
van Leer [19], or an approximate Riemann solver. 
Approximate Riemann solvers usually consist of methods 
that are based on flux vector splitting or flux difference 
splitting. Experience has shown that the latter class of 
Riemann solvers yields answers that are superior to the 
former. Thus we focus on flux difference splitting strategies 
here. 

One of the well-used flux difference strategies for solving 
the Riemann problem is the method of Roe [ 16 ]. It relies on 
making a local linearization of the difference in the fluxes on 
either side of a zone boundary and solving the corre- 
sponding linearized problem. Another is the method of 
Osher and Solomon [ 14] which relies on representing the 
Riemann problem with rarefaction waves and a contact dis- 
continuity. Colella [ 2 ] has presented a third strategy which 
represents the simple waves in the Riemann problem by a 
pair of shocks and a contact discontinuity. Experience has 
shown this third strategy to be more rugged than the 
original exact Riemann solver of van Leer [ 19] and also 
capable of computing shocks of arbitrary strength, Colella 
[2], Woodward and Colella [20]. It is the most com- 
plicated of the three Riemann solvers catalogued in this 
paragraph. It is also the method of choice that production 
codes turn to when it is felt on reviewing a simulation's 
results that a simpler Riemann solver might have been the 
source of spurious entropy generation in the problem. We 
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also observe that the method of Colella [2]  can be extended 
almost trivially to yield an exact Riemann solver. In a later 
section we will also show that it provides an exact treatment 
of situations where there is a transverse velocity across a 
shock. For non-relativistic hydrodynamics this is trivially 
achieved. For  relativistic flow this is a non-trivial and very 
desirable property to have in a Riemann solver. For  all these 
reasons we focus on extending the two-shock method to 
relativistic flow in this paper. 

In this paper we devise a method of solving the Riemann 
problem for relativistic flow. Since any general relativistic 
metric can be reduced to a locally Lorentz metric at a zone 
boundary this method is useful for both special relativistic 
and general relativistic calculations. In. Section II we 
catalogue some useful results from the theory of one-dimen- 
sional shocks. It is also an instructive way of introducing 
our notation for the rest of this paper since such notation 
varies widely from textbook to textbook. In Section III we 
build up some results that are useful for oblique shocks and 
show their usefulness in the Riemann problem. Almost all 
previous efforts at formulating the Riemann problem have 
been made using a lagrangian formulation. In this section 
we show that the problem can be formulated in an arbitrary 
lab-frame, too, which yields as it were an eulerian formula- 
tion. In Section IV we use those results to build two iterative 
r~ot solvers for the Riemann problem for relativistic flow. In 
Section V we show that the iteration schemes converge to 
the exact solution at their designed rates for a few test case 
shock tube problems. These will later be used as test 
problems in Balsara [ 1 ]. Appendices A and B contain 
auxiliary derivations and results that are useful for this 
paper but are too long to include in the main body of the 
paper. Appendix C shows the equivalence of the present 
formulation in its non-relativistic limit to the lagrangian 
formulation of van  Leer [ 19]. 

II. ONE-DIMENSIONAL STATIONARY SHOCKS 

polytropic index while y is reversed for the Lorenz factor. In 
keeping with the style of van Leer [19],  all equation 
numbers that are specific to a gamma-law gas will be 
appended with a F. 

The one-dimensional conservative form of the equations 
of relativistic hydrodynamics can be written as 

pfl)~2 __ p/c 2 P'u~2~)x I 

P"~)2VY ! P"~)2Uxl)Y ! 
\ pm, Vz / p y VxV  / 

=0.  (2.1) 

Here "c" denotes the speed of light. The speed of sound will 
be denoted by 0~; p , P ,  e, e, and S are the density, pressure, 
mass-equivalent thermal energy, total energy density, and 
entropy, respectively, of the fluid in the fluid's rest frame. 
They are all world scalars, y is the Lorentz factor defined in 
the usual way (y l /x/1 (v 2 . . ~  2 2 2 . = - Vy+ Vz)/C ), plz gives the 
sum of the rest-frame density and the mass-equivalent 
enthalpy density where kt is defined by 

e P 
¢t = 1 + -~ + PC 2 (2.2) 

F P 
= - -  (2.3r)  it 1 + F -  1 pC 2" 

The equations can be substantially simplified if one sets 

Vnew : Void/C, enew = Pold/c2, ~new = e o l a /  c2, (2.4) 

and multiplies the time coordinate with c. We assume 
henceforth that this is done and we also ignore the subscript 
"new" all over. The speed of sound is given by, Landau and 
Lifshitz [ 10, Section 134], 

In this section we list without proof  some relevant results 
from the theory of one dimensional relativistic shocks. All 
the results in this section hold in the shock's rest frame. We 
have found the paper by Taub [ 18 ] very useful for this part 
of the work. We have also found the books by Mihalas and 
Mihalas [ 11 ], Synge [ 17], and Landau and Lifshitz [ 10] 
very useful. Throughout  this work our metric will be 
d i a g { -  1, 1, 1, 1}. Any general relativistic metric can be 
locally transformed to this form. In the Landau and Lifshitz 
style subscripts 1 and 2 will always denote pre-shock and 
post-shock values, respectively. Many of the applications of 
relativistic flow can be represented quite well by a gamma- 
law gas. Hence, in this work we will focus on gamma-law 
gases. More general equations of state will require per- 
forming a sub-iteration on the equation of state as explained 
by Colella and Glaz [4] .  In this work F denotes the 

['dP'~ 1/2 

ct = ~ee  ) , (2.5) 

where the derivative is evaluated with the entropy held 
fixed. For a gamma-law gas we have 

( 6F) 
\ p i t  / " 

Even in the relativistic case the equation for the pseudo- 
entropy A ( S )  and mass-equivalent thermal energy of a 
gamma-law gas are given by 

P 1 P 
A(  S )  p r ,  1 p" = - -  e = F -  (2.7F) 
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The total energy density is related to the density and mass- 
equivalent thermal energy by 

e=p(1 +e). (2.8) 

The equations for mass, momentum, and energy conser- 
vation across a shock in the shock's rest frame are given by 

/71)"1/)1 ~--- P2 ~'2/32 (2.9) 
2 2 2 2 

PllUl 71/31 + P1 ~" Pzf12 ~)2 V2 + P2 (2.10) 

p l l t l  y~vl  = p21t2~/32. (2.11) 

For non-relativistic flow the Rankine-Hugoniot adiabat 
relates the post-shock thermodynamic variables to the 
pre-shock thermodynamic variables. The Taub adiabat per- 
forms a similar function in the relativistic case. It is given by, 
Taub [ 18 ], 

(p2 _ p1)  (fl~l +/A2~ 2 2 
P 2 /  = /12 --  /21" 

(2.12) 

Thus if we are given an equation of state and pre-shock den- 
sity and pressure, then for a specified post-shock pressure 
Eq. (2.12) gives us a post-shock density. For a gamma-law 
gas we substitute p as a function ofp and P from Eq. (2.3F) 
to obtain 

( F -  1 ) ( P 2 - e l )  ( 'u l(fl 1 - 1) ..~ U2(~//2- 1)'~ 
- - F -  \ 71 / 

(2.13F) 

This makes the quadratic aspect of Eq. (2.13F) clear. Only 
one of the roots of the above quadratic is physical, as we 
show in Appendix A. The fluid's pre- and post-shock speeds 
in the shock's rest frame are given by, Landau and Lifshitz 
[10, Section 135], 

vl = x/(P2 - P1)(e2 + P1)/(e2 --  e,)(el -t- P2) (2.14) 

v 2 = 4 ( P 2 - P 1 ) ( e  I + P z ) / ( e 2 - e l ) ( e 2 +  P l ) .  (2.15) 

We see that with the pre-shock thermodynamic variables 
specified, only the post-shock pressure needs to be known, 
in order for us to be able to deduce the post-shock density 
and the fluid's pre- and post-shock speeds in the shock's rest 
frame. We will make considerable use of this fact when con- 
structing the Riemann solver. Note, too, that Vl and v 2 in 
Eqs. (2.14) and (2.15) are positive definite by convention. 
We adopt this convention here so that the pre- and post- 
shock fluid speeds in the shock's rest flame will always be 
positive definite. Whether the shock is a C_ shock or a C+ 
shock is determined solely by whether the fluid in the 

shock's rest frame enters the shock from the left or from the 
right, respectively. 

For purposes of implementation, things work out a bit 
better if Eq. (2.13F) is expressed in terms of the post-shock 
pressure and total energy density. This and the choice of the 
correct root of Eq. (2.13F) are treated in Appendix A. Also, 
partial and total derivatives of v 1 and/32 with respect to P2 
become necessary in constructing the derivative terms in the 
iteration step of Newton's method iterative solver. These 
have been catalogued in Appendix B. To construct the total 
derivative of/31 and/32 with respect to P2 we will also need 
the total derivative of e 2 with respect to P2. That, too, has 
been clone in Appendix A. The reader wishing to have a 
comprehensive understanding of this paper should read 
Appendices A and B at this point. 

IlL OBLIQUE SHOCKS 

We begin by observing that in the non-relativistic case the 
shocks used in solving the Riemann problem at the zone 
boundaries of any Godunov-like scheme are almost always 
oblique shocks. The only exception is when the transverse 
velocities at the zone boundary are zero. We also note that 
for non-relativistic flow we can go from a specified station- 
ary perpendicular shock to a range of oblique shocks with 
the same pressure jump simply by (1) starting in the rest- 
frame of the normal stationary shock with the specified 
pressure jump and pre-shock thermodynamic variables, (2) 
making a Galilean transformation in the plane of the shock 
so that the shock is still stationary in the new frame but has 
a transverse fluid velocity across it, and (3) making another 
Galilean transformation perpendicular to the plane of the 
shock. In the rest of this paper we assume that the zone 
boundary has its normal aligned along the x-axis. To make 
an oblique shock (say, for example, a C_ shock) with a 
specified pressure jump matchup with the lab-frame fluid 
velocity in front of the shock (i.e., to the left of the shock in 
our example), we start off in the rest frame of a shock with 
the specified pressure jump and pre-shock thermodynamic 
variables as in step (1) above. Then we make a Galilean 
transformation as in step (2) above with the velocity vector 
given by the negative of the transverse velocity in front of 
the shock. Last, we make a Galilean transformation as in 
step (3) above so that the pre-shock x-velocity matches up 
with the pre-shock x-velocity of the fluid ahead of the shock. 
The lab-frame can be identified with the zone boundary 
which is assumed to be non-moving. (In our example, if the 
fluid to the left of the shock moves with a lab-frame 
x-velocity given by/3xll and if the pre-shock fluid speed in 
the shock's rest frame is given by Vlz then the Galilean 
transformation in step (3) above should be made with a 
velocity - t / such  that VlL + t/= Vx U" If the post-shock fluid 
speed in the shock's rest frame is given by v2L and if the post- 
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IV. CONSTRUCTING THE ROOT SOLVER 

Solving the Riemann problem for non-relativistic 
hydrodynamics essentially consists of fitting a left-going 
simple wave and a right-going simple wave to the specified 
left and right states so that the normal velocities on either 
side of the contact discontinuity match up. Collela [2]  has 
shown that a rugged method can be devised by restricting 
those simple waves to be shocks. Thus instead of using a 
rarefaction wave (when it is necessary) one uses the analyti- 
cal continuation of a shock wave Hugoniot onto the rarefac- 
tion side. Proper entropy enforcement at rarefaction shocks 
can then be obtained via an entropy fix as shown by Harten 
and Hyman [6] .  All of these facts carry over to the 
relativistic case. The essential part of solving the Riemann 
problem is, therefore, to guess a post-shock pressure P2 
such that the post-shock x-velocities on either side of the 
contact discontinuity are equal. This requirement translates 
into finding the root of 

l) x 2  l - -  1) x 2  r = O. (4.1) 

In general, if the equation is rather complicated this task is 
entrusted to a root solver algorithm. In the next two sub- 
sections we construct two root solvers, one based on a 
secant method and the other based on a Newton method. 
The secant method is simple and easy to implement and has 
a good rate of convergence. The Newton method is harder 
to implement but has the same convergence rate as the 
highly efficient non-relativistic Riemann solvers of van Leer 
[ 19] and CoMla [2] .  

(1) The Secant Me thod  

The secant method, as defined in van Leer [ 19 and 
references therein ], consists of fitting two straight lines from 
the points ( 2, Vx2t) and (P2, Vxzr) to the points (Pu,  Vxlt) 
and (Plr,  GI~) on the respective Hugoniot curves. The point 
of intersection of the two lines gives us the next iterate P~ + 1. 
This is a somewhat different recipe from that provided in 
Press et al. [ 15 ]. It is, however, the way the secant method 
is routinely used in numerical hydrodynamics. The n th 
iteration of the secant method proceeds via the following 
steps: 

Step I. Let P~ denote the pressure obtained from the 
previous iteration. Using Pg in Eq. (A.9F) find the energy 
densities and, therefore, the other required thermodynamic 
variables behind the shocks on either side. Use Eqs. (2.14) 
and (2.15) to obtain vii., VzI., VlR, and V2R. 

Step II. Using Eqs. (3.11) and (3.13) obtain GEt. 
Similarly, using Eqs. (3.23) and (3.25) obtain VxEr. These are 
the values for the post-shock x-velocities in the lab-frame 
for that iteration. 

Step III. 

where 

Obtain the new iterate P~ +1 from 

dG2~ dG2r 
[vxl , . -  vxu] + - - P l t - - - - P l r  

p ~ + l  = dP~ dP~ , (4.2) 

L dP~ dP~ J 

n n n n 
d V x 2 l  U x 2 l  - l ) x l  I d v x 2 r  V x 2 r  - -  l ) x l  r 

dP~ P~-PI, de~ P~--Plr 
(4.3) 

The iteration can be started using 

0 0 0 0 
d I d x 2  l V x 2  l - -  l ) x l l  d v  x 2  r l ) x 2  r - id x l r 

de o pOl-- p l l  ' de ° P°r-- elr 
(4.4) 

in Eq. (4.2). Here PO t = (1 + 6) Pll,  P°r = ( 1 + 6) Plr,  and 6 
is a small number, say, 0.05; 0 and o V x2 l l) x2 r are the post-shock 
velocities corresponding to Pz°z and pz0r. 

(2) The Newton Me thod  

The Newton method for obtaining the roots of a trans- 
cendental equation has been shown to have second-order 
convergence. It is, therefore, the method of choice. Van Leer 
[ 19] has shown that a root solver based on the Newton 
method can be constructed for non-relativistic flow. We 
show here that the same can be done for relativistic flow. 
The Newton method consists of evaluating the total 
derivative of the left-hand side of Eq. (4.1) with respect to 
the independent variable, which in our case is the pressure 
at the contact discontinuity P2, and of using that to iterate 
P2 to convergence. Thus, using a superscript "n" for the nth 
iterate, we have the following iteration scheme: 

n / [ - d V n x 2 '  dv~2~ 1 (4.5) 
e ~ + l  : p ~ _  [vn21- l ) x2  r ] / L ~2 dP~ ~" 

In order to implement the iteration scheme we need analyti- 
cal forms for the total derivatives in the denominator of 
Eq. (4.5). Observing Eqs. (3.13) and (3.25) we note that they 
are functions of (r h, 7¢l, vzL) and (r/r, 7¢r, VER), respectively. 
Equations (3.10) and (3.11 ) show us that r/l and 7¢l are func- 
tions of VlL. Similarly, Eqs. (3.22) and (3.23) show us that 
r/r and 7¢r are functions of VlR. The total derivatives of vlL, 
v2L, vlR, and v2R with respect to P2 have been constructed 
in Appendices A and B. Thus the problem of obtaining an 
analytical representation of the total derivatives in Eq. (4.5) 
can be reduced to successive application of the chain rule. 

For  the left-going shock we have 

d•,y.l V l L  . 2 / .  2 2 
- -  - -  - -  ~ 1 1 ~ U y l l  dl- V z l l ) .  (4.6) 

d V l L  ? ¢ l  
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here. We also wish to have a ruggedized relativistic 
Riemann solver for use in Balsara [ 1 ]. For  all these test 
problems the speed of light is assumed to be unity. 

, The first test problem is a slight modification of the Sod 
shock problem. It consists of taking p l l=  100, P i t =  1 and 
Pit = 12.5, Pi t  = 0.1. The velocities on either side are initially 
set to zero. The polytropic index F is set to 1.4. The 
cell-break problem results in a non-relativistic flow. The 
solution for this problem is well known. The Hugoniot 
curves for the two shock approximation are shown in Fig. 1. 
Table I gives the convergence history for the Newton 
method applied to this problem. The first column gives the 
iteration number. The second and third columns give the 
iterated values of the pressure and velocity of the contact 
discontinuity. The fourth and fifth columns give the den- 
sities on the left and right of the contact discontinuity 
evaluated in the two shock approximation. The siXth 
column gives the order of convergence evaluated from 
successive iterates. The Riemann solver was asked to con- 
vergence to six significant digits of accuracy and the results 

were compared to a solution obtained with 10 digits of 
accuracy. We see that the Newton method converges at the 
design rate. The numbers that it converges to are also con- 
sistent with those expected for the standard Sod shock tube 
with the densities scaled up by a factor of 100 and the 
velocity scaled down by a factor of 10. Thus we retrieve the 
expected result in the non-relativistic limit. 

The second test problem is the relativistic shock tube 
problem described in Hawley, Smarr, and Wilson [ 8 ]. It 
consists of taking p l l=  10, P u = 4 0 / 3  and P l r  = 1, 

Plr = 2 × 10 -6/3. The velocities on either side are initially 
set to zero. The polytropic index F is set to ~. The cell-break 
problem results in a relativistic flow. Owing to the great 
pressure difference on either side of the cell break problem 
one expects that several iterations will be needed in order for 
convergence to be obtained. The Hugoniot curves for the 
two shock approximation are shown in Fig. 2. Tables II and 
III give the convergence histories for the Newton and 
Secant methods applied to this problem. The columns in 
these tables are annotated similarly to Table I. Again the 

TABLEI  

Newton Method, Non-RelativisticShockTube 

iterate Pressure Velocity Density Left Density Right Convergence 

1 1.9022853E-01 0.0000000E+00 1.0000000E+02 1.2500000E+01 
2 2.8451664E-01 1.2158817E-01 3.4527238E+01 1.9638602E+01 
3 3.0322208E-01 9.5597512E-02 4.3038328E+01 2.5552409E+01 2.0804 
4 3.0369685E-01 9.1233176E-02 4.4695010E+01 2.6580572E+01 2.0067 
5 3.0369713E-01 9.1125150E-02 4.4736926E+01 2.6606123E+01 2.0056 
6 3.0369713E-01 9.1125150E-02 4.4736926E+01 2.6606123E+01 
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TABLE II 

Newton Method, Relativistic HSW Shock Tube 

iterate Pressure Velocity Density Left Density Right Convergence 

4 5356245E-04 
4 5287618E-02 
3 9174192E-01 
1 0047695E+00 
1 3811611E+00 
1 4392987E+00 
1 4402745E+00 
1 4402748E+00 
1 4402748E+00 

0.0000000E+00 1.0000000E+01 1.0000000E+00 
9.4269063E-01 I.I123768E+00 3.9785000E+00 
9.3157996E-01 1.2272288E+00 4.0417886E+00 9.0250 
8.6332104E-01 1.8349091E+00 4.3385640E+00 3.0776 
7.6965264E-01 2.5643930E+00 4.7870758E+00 2.2729 
7.2043461E-01 2.9352550E+00 5.0297306E+00 2.0549 
7.1323751E-01 2.9894436E+00 5.0654989E+00 2.0038 
7.1311754E-01 2.9903471E+00 5.0660958E+00 1.9853 
7.1311754E-01 2.9903471E+00 5.0660958E+00 

Riemann solver was asked to converge to six significant 
digits of accuracy and the results were compared to a solu- 
tion obtained with 10 digits of accuracy. Hawley, Smarr, 
and Wilson [ 8 ] have obtained an analytic solution for this 
problem with the rarefaction fan exactly represented. They 
find a resolved pressure of 1.38 as opposed to our 1.44. This 
really shows that the two shock approximation works quite 
well, indeed, even when the problem is relativistic. Note 
from Table II that the first few iterations of the Newton 
method converge faster than the design rate of 2. The 

asymptotic order of convergence of the method remains 2 
for all the iterations. From Table III we can see that the first 
few iterations of the secant method also converge rapidly. If 
the method were a true secant method it should have con- 
verged at a rate of 1.618. However, the comment made at 
the beginning of sub-section 4.1 shows that the secant 
method as used in numerical hydrodynamics is not a real 
secant method. Thus as the iterations progress, the rate of 
convergence soon deteriorates from the design rate for a real 
secant method. This should not be viewed very negatively 

TABLE III 

Secant Method, Relativistic Shock Tube 

iterate Pressure Velocity Density Left Density Right Convergence 

6 
7 
8 
9 

i0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

4.5325209E-04 
2 3144068E-02 
1 6433720E-01 
4 4127010E-01 
7 4359914E-01 
9 9164554E-01 
1 1659441E+00 
1.2778312E+00 
1.3459222E+00 
1.3860878E+00 
1.4093576E+00 
1.4227004E+00 
1.4303061E+00 
1.4346271E+00 
1.4370774E+00 
1.4384653E+00 
1.4392509E+00 
1.4396956E+00 
1.4399471E÷00 
1.4400894E+00 
1.4401699E+00 
1.4402155E+00 
1.4402412E+00 
1.4402558E+00 
1.4402640E+00 
1.4402687E+00 
1.4402713E+00 
1.4402728E+00 
1.4402737E+00 
1.4402737E+00 

-8.5933702E-07 
9.4269071E-01 
9.3693314E-01 
9.0566509E-01 
8.5485672E-01 
8.0702178E-01 
7.7146033E-01 
7.4798384E-01 
7.3347686E-01 
7.2484568E-01 
7.1982086E-01 
7.1693171E-01 
7.1528225E-01 
7.1434431E-01 
7.1381219E-01 
7.1351069E-01 
7.1333999E-01 
7.1324338E-01 
7.1318871E-01 
7.1315779E-01 
7 1314029E-01 
7 1313040E-01 
7 1312480E-01 
7 1312163E-01 
7 1311984E-01 
7 1311883E-01 
7 1311826E-01 
7 1311793E-01 
7 1311775E-01 
7 1311775E-01 

1.0000012E+01 1.0000012E+00 
I.I123759E+00 3.9784848E÷00 
1.1728049E÷00 4.0211427E+00 6.6071 
1.4728236E+00 4.1484820E÷00 2.3313 
1.9037058E+00 4.3779452E+00 1.4731 
2.2796470E+00 4.6054541E+00 1.2211 
2.5507165E+00 4.7782326E+00 1.1176 
2.7278994E+00 4.8934754E+00 1.0653 
2.8371047E+00 4.9650934E+00 1.0368 
2.9020555E÷00 5.0078432E+00 1.0208 
2.9398749E+00 5.0327780E+00 1.0118 
2.9616252E÷00 5.0471305E+00 1.0067 
2.9740451E+00 5.0553298E+00 1.0038 
2.9811081E+00 5.0599937E+00 1.0021 
2.9851155E+00 5.0626403E+00 1.0012 
2.9873861E+00 5.0641400E+00 1.0007 
2.9886718E÷00 5.0649891E÷00 1.0004 
2.9893994E+00 5.0654697E+00 1.0002 
2.9898111E+00 5.0657417E+00 1.0001 
2.9900440E+00 5.0658955E+00 1.0001 
2.9901758E+00 5.0659826E+00 1.0000 
2.9902503E+00 5.0660318E+00 1.0000 
2.9902925E+00 5.0660596E+00 1.0000 
2.9903163E+00 5.0660754E+00 1.0000 
2.9903298E+00 5.0660843E+00 1.0000 
2.9903375E+00 5.0660894E+00 1.0000 
2.9903418E+00 5.0660922E+00 1.0000 
2.9903442E+00 5.0660938E+00 1.0000 
2.9903456E+00 5.0660947E+00 1.0000 
2.9903456E+00 5.0660947E+00 
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iterate Pressure Velocity Density Left Density Right Convergence 

1 3.1628490E-03 8.9481927E-01 4.4642857E-01 4.4642857E-01 
2 3.4062203E-01 8.7932848E-01 1.7872579E+00 1.7872579E+00 
3 1.5943632E+00 6.3839033E-01 2.0622095E+00 2.0622095E+00 5.7838 
4 2.4342799E+00 2.0537132E-01 2.7546544E+00 2.7546544E+00 2.1388 
5 2.6142628E+00 3.1578275E-02 3.1002071E+00 3.1002071E+00 2.0119 
6 2.6202445E+00 9.8508885E-04 3.1674348E+00 3.1674348E+00 2.0009 
7 2.6202507E+00 1.0169624E-06 3.1696350E+00 3.1696350E+00 1.9921 
8 2.6202507E+00 I.I130282E-12 3.1696372E+00 3.1696372E+00 

for the following three reasons: (1 i The secant method is 
much easier to program. (2) The initial few digits of 
accuracy are obtained at a very rapid rate of convergence. In 
a numerical code one rarely requires more than a few digits 
of accuracy. (3) The construction of analytically defined 
derivatives for the Newton method in a numerical code 
takes several float point operations (unlike the non- 
relativistic case). Both the secant and Newton methods 
converge unconditionally for convex equations of state. 
However, if rapid convergence to arbitrary accuracy is 

, desired, the Newton method is the method of choice. 
The third and fourth test problems are derived from the 

non-relativistic Noh problem. A simplified version of the 
non-relativistic Noh problem may be derived by having two 
equal density pressureless fluids slam into each other with 
equal and opposite velocities. Our third and fourth test 
problems consist of having two fluid streams with Lorenz 
factors of 2.24 and 1000, respectively, run into each other 
with equal and opposite velocities. The Lorenz factor of 2.24 
in our third test problem is barely within the range of 
Lorenz factors that can be treated by time-explicit, artificial 
viscosity-based formulations of relativistic hydrodynamics, 
Hawley, Smarr, and Wilson [ 8 ]. The Lorenz factor of 1000 
in our fourth test problem is well outside the range of 
Lorenz factors that can be handled by time-explicit artificial 

viscosity formulations. The parameters for the fourth test 
problem, i.e., the one with a Lorenz factor of 1000, are 
chosen to be extremely concordant with those that would be 
expected in a gamma ray burst problem. The third test 
problem can be specified in detail by having Pit = 1/(2.24), 
P1l= 2 x 10-6/3, v i i  = (1  - -  1/(2.24)2) 1/2 and Ply = 1/(2.24), 
Par = 2 x 10-6/3, Vlr = - ( 1  - 1/(2.24)2) 1/2 and setting F t h e  
polytropic index to ~. The fourth test problem can be 
specified in detail by having Pit = 1/(1000), P1l = 2 x 10 -6 /3 ,  
/)11 = (1 - 1 / (1000)2)  1/2 and pit = 1/(1000), P l r =  2 × 10-6/3, 
Vlr = - - ( 1  - -  1 / ( 1 0 0 0 )  2)  1/2 and setting F the polytropic index 
to 4. The convergence histories for the Newton method 
applied to the third and fourth test problems are given in 
Tables IV and V, respectively. One readily sees that the 
convergence is rapid and occurs at the optimal rate. 
Convergence to the first two or three digits of accuracy is in 
fact extremely rapid. 

The fifth test problem is taken from the stated values in 
Norman and Winkler [12]. It is specified by p l l=1 ,  
Pll = I000 and P l r =  1, P l r = 2  x 10 6/3. The velocities on 
either side are initially set to zero. The polytropic index F is 
set to 4. The convergence tests are shown in Table VI. M. 
Norman has informed the author that the actual simula- 
tions presented in Norman and Winkler [ 12] were done 

s with a polytropic index of 3. We have run the Riemann 

T A B L E  V 

Newton Method, Second RelativisticNohShockTube 

iterate Pressure Velocity Density Left Density Right Convergence 

2.9853951E+01 
6 9740671E+02 
1 1837350E+03 
1 3278185E+03 
1 3365260E+03 
1 3365546E+03 
1 3365545E+03 

9.9999950E-01 1.0000000E-03 1.0000000E-03 
9.5624187E-01 6.0124211E-01 6.0124211E-01 
3.1419467E-01 2.8925450E+00 2.8925450E+00 2.0009 
6.0627923E-02 3.7674053E+00 3.7674053E+00 2.0000 
3.2784458E-03 3.9898997E+00 3.9898997E+00 2.0004 
1.0674555E-05 4.0029493E+00 4.0029493E+00 1.2788 

-8.7916058E-09 4.0029920E+00 4.0029920E+00 
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APPENDIX B: SOME USEFUL EQUATIONS DERIVED 
FROM THE FLUID SPEED IN THE SHOCK'S REST FRAME 

In this appendix we derive some useful partial and total 
derivatives of the fluid speeds in the shock's rest frame 
(Eqs. (2.14) and (2.15)). In the Riemann solver we treat the 
pressure at the contact discontinuity in the Riemann 
problem as the independent variable and the difference 
between the fluid velocities on either side of the contact dis- 
continuity as the dependent variable that needs to be zeroed 
by an iterative root-solver. The expressions for the fluid's 
lab-frame velocity on each side of the contact discontinuity 
will involve both the pre- and post-shock fluid speeds in the" 
rest frame of the shock propagating on that side. Thus we 
see that we will need expressions for the total derivative of 
Vl and/)2 with respect to P2. 

A glance at Eqs. (2.14) and (2.15) shows that when 
P2 -+ P1 we will have a problem in evaluating these expres- 
sions and any of their derivatives. Thus for stable numerical 
evaluation we will need one set of expressions when P2 is 
significantly different from PI and another when P2 ~ P1- 
In practice we have found that I P2 - PI] > 0.01 min(P2, P1) 
is a fair criterion to allow us to say that P2 and P1 are 
significantly different. Thus we derive the required formulae 
in the following two cases. 

Case I. P2 is significantly different from PI. Note first 
that e 2 varies monotonically with P2. Thus when P2 is 
significantly different from P1 we are assured that e2 is 
significantly different from e 1 . In this case we have 

dvl ~/)1 ~/)1 de2 (B.1) 
dp 2 = O p  2 + Oe 2 dP 2 

d/) 2 0/) 2 01) 2 de2 (B.2) 
dP2 ~ 2  + Oe2 dP2' 

Case II. P2 is not significantly different from PI"  Note 
that when P2 --* P1 we are operating in a weak shock limit. 
In that limit, as shown by Landau and Lifshitz [ 10, Sec- 
tion 86], $2 and S1 differ only by a term that is proportional 
to the third order of ( P 2 -  P1). Synge [ 17] has shown that 
the same is true for relativistic shocks. Thus when P2 -'* P1 
we can assert the following (here dp = ( P 2 -  Pl)): 

( r - l )  ) " 2 - ' , = ( F P ' ~ ( I +  Ap Ap (B.7F) 
\ Pl / \  

( FPI Ap) Ap (B.8F) e 2 - e l = P l  l + 2 p 2 p  1 

"2--P1 ( F P I ~ + ( F P , ) V ( F - 1 )  I~ml ] 

e2--e I \~1~1/ \ ~ / L  ~Pl 2p21tl AAp" 
(B.9r) 

Thus whenever P2 ~ e l  we can set 

P 2 - - P 1  ( FP-------~I ~. (B.10r) 
e2--el \ p l / t l /  

It is also trivial to show that 

de 2 dP 2 FP1 
dp2 =i l l ,  @2 Pl  ' 

de 2 /91]/1 1 
2 ~ dP 2 1-'p 1 (x 1 

(B.llr) 

so that Eqs. (B.9F) and (B.11F) taken together give 

d --P1 1 V ( F ~ I )  F P  1 
dP2 (~22~i) =~  [- ~pl 2pmfll' 1 . (B.12F) 

where the total derivative ofe 2 with respect to P2 is given by 
Eq. (A.10F). The partial derivatives above are easy to 
evaluate and are given by 

0 / ) 1 _ / ) 1 1 1  1 ] (B.3) 
OP2 2 (P22-P1) ( e l+P2)  

[ 1  1 ] Ov__ A = _/)1 ( e 2 - 
Oe2 2 el) (e2 +P1) (B.4) 

Ov2 v2[- 1 1 ] (B.5) 
Oez = 2- _(P2 - P1) + (e, + P2~ 

] /)2 Ov2 2 L V(e2 1 1 
O e 2 - -  el) b(e2q-P1)A" 

(B,6) 

Thus all the derivatives in Eqs. (B.1) and (B.2) have been 
catalogued. 

Thus in the limit where P2 --* P1 we have 

dr1 ( F +  1) 30~ 1 

dP 2 4Ct 1 pllll 4plfl l  

and 

(B.13F) 

dyE ( F - 3 )  ~1 
- -  + - -  (B.14F) 

dP 2 40~1 pl/Zl 4plf l l  

If the shocks are both weak and non-relativistic, i.e., 
P2--* P1, 0el '~ 1, and/~1 ~ 1, we obtain 

d(v2 - vl) 1 
dP2 alPl" 

(B.15F) 

Note that the denominator on the right-hand side of 
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(B.15F) is just the lagrangian sound speed. This is exactly 
what van Leer [19] obtains in the non-relativistic case 
when the shock is a weak shock. This shows that in the 
non-relativistic limit when considering weak shocks our 
equations reduce trivially to those of van Leer [ 19]. In 
Appendix C we show that in the non-relativistic limit this is 
true for shocks of arbitrary strength. 

A P P E N D I X  C: EQUIVALENCE TO THE LAGRANGIAN 
FORMULATION OF VAN LEER [19] 

Our method of deriving the Riemann solver iteration is 
very different from the lagrangian method devised by van 
Leer [ 19]. Thus we show that in the non-relativistic limit 
our method reduces to that of van Leer [ 19] (with simple 
waves restricted to being shocks, Colella [2]). 

In the non-relativistic limit, using arguments outlined at 
the beginning of Section IV we obtain the post-shock 
x-velocities in the lab-frame as 

Vx2I  : V x l l  - -  (/') IL -- V 2 L )  

V x 2  r : V x l  r "~- (U1R --V2R ). 

(C.1) 

(C.2) 

It may also be noted that Eqs. (3.11) and (3.13) reduce to 
Eq. (C.1) in the non-relativistic limit. Similarly, Eqs. (3.23) 
and (3.25) reduce to Eq. (C.2). The derivatives ofEqs. (C.1) 
and (C.2) above, with respect to the post-shock pressure P2, 
are given by 

dvx2l d(VlL -- V2L) 
= (C.3) 

dP2 dP2 

dvx2r d(VlR--V2R) 

dP2 dP2 
(C.4) 

In the non-relativistic limit the equation relating the rest- 
frame velocity jump to the post-shock pressure is given by 
Eq. (89.5) of Landau and Lifshitz [ 10], 

/)1 --  V2 = 2 N / / ~ l  ( P 2 - -  P 1 )  , ( c . 5 r )  
x / ( F -  1) e l  + ( F +  1 ) P2 

and its total derivative with respect to pressure P2 is given 
by 

d ( v l - v 2 )  1 ( 3 F - - 1 ) P I + ( F + I ) P  e 

dP2 ~ [(F--1)PI+(F+I)P2] 3/2" 
(c.6r) 

In the Eqs. (C.5F) and (C.6F), above, P1 has to be suitably 
set to be the pressure on the left or the right of the Riemann 
problem. This allows us to evaluate the right-hand sides of 
Eqs. (C.3) and (C.4). When Eqs. (C.1), (C.2), (C.3), and 

(C.4) are put into Eq. (4.2) we obtain the required non- 
relativistic iteration scheme. Our formulation is more like 
an eulerian formulation, in the sense that it is done in one 
single lab-frame with the help of simple Galilean transforms. 
It is interesting to note that it yields a non-relativistic 
iteration scheme in just a few steps. 

In the lagrangian formulation of van Leer [19] W, P*, 
and u* denote the lagrangian shock speed of the specified 
shock, the pressure behind the shock, and the lagrangian 
velocity behind the shock, respectively. The difference in 
post-shock velocities is the same whether formulated in a 
lagrangian or lab-frame. Thus the square-bracketed term in 
the numerator on the right-hand side of Eq. (4.2) remains 
the same. We will show that so does the denominator. 
Equation (31 F)  of van Leer [ 19 ] gives (in our notation) 

w =  ~ 1  [ 1 + ( ( r  + 1)/(2r))(P~ - e l ) / e ,  ] 1/~ 

(c.7r) 

which can also be written as 

W = x / ~  [ ( F - -  1) e l  -~- (/"-31- 1) P2] 1/2. (C.8F) 

The absolute value of the slope of the Hugoniot is denoted 
by Z and is given by Eq. (A.2) of van Leer [ 19] (where we 
consider only the shock wave not the rarefaction wave): 

Z-~ ~p~dU* _ W 2 2W 3 +  FP1Pl (C.9F) 

Substituting Eq. (C.8F) into (C.9F) we see that it reduces 
exactly to the right-hand side of Eq. (C.6F). Thus the slopes 
of the Hugoniot in the two formulations match up, as they 
should. The iteration scheme of van Leer [ 19] is given by 
his Eq. (A.1) which is written as 

e , ( n  + 1 )  = p* (n )  --  z ( n )  z ( ~ ) ( u ~ ( n )  __ U * (n ) ) / ( z (n )  -~- Z ~ ) ) ,  

(C.10) 

where the subscripts - and + denote values for the left- 
and right-going shocks, respectively. Thus after making 
note of the negative sign in Eq. (C.3) it is trivial to see that 
the two formulations yield exactly the same iteration 
scheme. Thus the equivalence is established. 
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